3.288 \(\int \frac{1}{x^6 (1+2 x^4+x^8)} \, dx\)

Optimal. Leaf size=113 \[ \frac{1}{4 x^5 \left (x^4+1\right )}-\frac{9}{20 x^5}+\frac{9 \log \left (x^2-\sqrt{2} x+1\right )}{16 \sqrt{2}}-\frac{9 \log \left (x^2+\sqrt{2} x+1\right )}{16 \sqrt{2}}+\frac{9}{4 x}-\frac{9 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{9 \tan ^{-1}\left (\sqrt{2} x+1\right )}{8 \sqrt{2}} \]

[Out]

-9/(20*x^5) + 9/(4*x) + 1/(4*x^5*(1 + x^4)) - (9*ArcTan[1 - Sqrt[2]*x])/(8*Sqrt[2]) + (9*ArcTan[1 + Sqrt[2]*x]
)/(8*Sqrt[2]) + (9*Log[1 - Sqrt[2]*x + x^2])/(16*Sqrt[2]) - (9*Log[1 + Sqrt[2]*x + x^2])/(16*Sqrt[2])

________________________________________________________________________________________

Rubi [A]  time = 0.0543694, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.562, Rules used = {28, 290, 325, 297, 1162, 617, 204, 1165, 628} \[ \frac{1}{4 x^5 \left (x^4+1\right )}-\frac{9}{20 x^5}+\frac{9 \log \left (x^2-\sqrt{2} x+1\right )}{16 \sqrt{2}}-\frac{9 \log \left (x^2+\sqrt{2} x+1\right )}{16 \sqrt{2}}+\frac{9}{4 x}-\frac{9 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{9 \tan ^{-1}\left (\sqrt{2} x+1\right )}{8 \sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^6*(1 + 2*x^4 + x^8)),x]

[Out]

-9/(20*x^5) + 9/(4*x) + 1/(4*x^5*(1 + x^4)) - (9*ArcTan[1 - Sqrt[2]*x])/(8*Sqrt[2]) + (9*ArcTan[1 + Sqrt[2]*x]
)/(8*Sqrt[2]) + (9*Log[1 - Sqrt[2]*x + x^2])/(16*Sqrt[2]) - (9*Log[1 + Sqrt[2]*x + x^2])/(16*Sqrt[2])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^6 \left (1+2 x^4+x^8\right )} \, dx &=\int \frac{1}{x^6 \left (1+x^4\right )^2} \, dx\\ &=\frac{1}{4 x^5 \left (1+x^4\right )}+\frac{9}{4} \int \frac{1}{x^6 \left (1+x^4\right )} \, dx\\ &=-\frac{9}{20 x^5}+\frac{1}{4 x^5 \left (1+x^4\right )}-\frac{9}{4} \int \frac{1}{x^2 \left (1+x^4\right )} \, dx\\ &=-\frac{9}{20 x^5}+\frac{9}{4 x}+\frac{1}{4 x^5 \left (1+x^4\right )}+\frac{9}{4} \int \frac{x^2}{1+x^4} \, dx\\ &=-\frac{9}{20 x^5}+\frac{9}{4 x}+\frac{1}{4 x^5 \left (1+x^4\right )}-\frac{9}{8} \int \frac{1-x^2}{1+x^4} \, dx+\frac{9}{8} \int \frac{1+x^2}{1+x^4} \, dx\\ &=-\frac{9}{20 x^5}+\frac{9}{4 x}+\frac{1}{4 x^5 \left (1+x^4\right )}+\frac{9}{16} \int \frac{1}{1-\sqrt{2} x+x^2} \, dx+\frac{9}{16} \int \frac{1}{1+\sqrt{2} x+x^2} \, dx+\frac{9 \int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx}{16 \sqrt{2}}+\frac{9 \int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx}{16 \sqrt{2}}\\ &=-\frac{9}{20 x^5}+\frac{9}{4 x}+\frac{1}{4 x^5 \left (1+x^4\right )}+\frac{9 \log \left (1-\sqrt{2} x+x^2\right )}{16 \sqrt{2}}-\frac{9 \log \left (1+\sqrt{2} x+x^2\right )}{16 \sqrt{2}}+\frac{9 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} x\right )}{8 \sqrt{2}}-\frac{9 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} x\right )}{8 \sqrt{2}}\\ &=-\frac{9}{20 x^5}+\frac{9}{4 x}+\frac{1}{4 x^5 \left (1+x^4\right )}-\frac{9 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{9 \tan ^{-1}\left (1+\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{9 \log \left (1-\sqrt{2} x+x^2\right )}{16 \sqrt{2}}-\frac{9 \log \left (1+\sqrt{2} x+x^2\right )}{16 \sqrt{2}}\\ \end{align*}

Mathematica [A]  time = 0.0776377, size = 103, normalized size = 0.91 \[ \frac{1}{160} \left (\frac{40 x^3}{x^4+1}-\frac{32}{x^5}+45 \sqrt{2} \log \left (x^2-\sqrt{2} x+1\right )-45 \sqrt{2} \log \left (x^2+\sqrt{2} x+1\right )+\frac{320}{x}-90 \sqrt{2} \tan ^{-1}\left (1-\sqrt{2} x\right )+90 \sqrt{2} \tan ^{-1}\left (\sqrt{2} x+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^6*(1 + 2*x^4 + x^8)),x]

[Out]

(-32/x^5 + 320/x + (40*x^3)/(1 + x^4) - 90*Sqrt[2]*ArcTan[1 - Sqrt[2]*x] + 90*Sqrt[2]*ArcTan[1 + Sqrt[2]*x] +
45*Sqrt[2]*Log[1 - Sqrt[2]*x + x^2] - 45*Sqrt[2]*Log[1 + Sqrt[2]*x + x^2])/160

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 80, normalized size = 0.7 \begin{align*} -{\frac{1}{5\,{x}^{5}}}+2\,{x}^{-1}+{\frac{{x}^{3}}{4\,{x}^{4}+4}}+{\frac{9\,\arctan \left ( 1+x\sqrt{2} \right ) \sqrt{2}}{16}}+{\frac{9\,\arctan \left ( -1+x\sqrt{2} \right ) \sqrt{2}}{16}}+{\frac{9\,\sqrt{2}}{32}\ln \left ({\frac{1+{x}^{2}-x\sqrt{2}}{1+{x}^{2}+x\sqrt{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^6/(x^8+2*x^4+1),x)

[Out]

-1/5/x^5+2/x+1/4*x^3/(x^4+1)+9/16*arctan(1+x*2^(1/2))*2^(1/2)+9/16*arctan(-1+x*2^(1/2))*2^(1/2)+9/32*2^(1/2)*l
n((1+x^2-x*2^(1/2))/(1+x^2+x*2^(1/2)))

________________________________________________________________________________________

Maxima [A]  time = 1.47472, size = 128, normalized size = 1.13 \begin{align*} \frac{9}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) + \frac{9}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) - \frac{9}{32} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) + \frac{9}{32} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) + \frac{45 \, x^{8} + 36 \, x^{4} - 4}{20 \,{\left (x^{9} + x^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^6/(x^8+2*x^4+1),x, algorithm="maxima")

[Out]

9/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) + 9/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) - 9/32*sqr
t(2)*log(x^2 + sqrt(2)*x + 1) + 9/32*sqrt(2)*log(x^2 - sqrt(2)*x + 1) + 1/20*(45*x^8 + 36*x^4 - 4)/(x^9 + x^5)

________________________________________________________________________________________

Fricas [A]  time = 1.57116, size = 424, normalized size = 3.75 \begin{align*} \frac{360 \, x^{8} + 288 \, x^{4} - 180 \, \sqrt{2}{\left (x^{9} + x^{5}\right )} \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} + \sqrt{2} x + 1} - 1\right ) - 180 \, \sqrt{2}{\left (x^{9} + x^{5}\right )} \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} - \sqrt{2} x + 1} + 1\right ) - 45 \, \sqrt{2}{\left (x^{9} + x^{5}\right )} \log \left (x^{2} + \sqrt{2} x + 1\right ) + 45 \, \sqrt{2}{\left (x^{9} + x^{5}\right )} \log \left (x^{2} - \sqrt{2} x + 1\right ) - 32}{160 \,{\left (x^{9} + x^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^6/(x^8+2*x^4+1),x, algorithm="fricas")

[Out]

1/160*(360*x^8 + 288*x^4 - 180*sqrt(2)*(x^9 + x^5)*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 + sqrt(2)*x + 1) - 1)
- 180*sqrt(2)*(x^9 + x^5)*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 - sqrt(2)*x + 1) + 1) - 45*sqrt(2)*(x^9 + x^5)*
log(x^2 + sqrt(2)*x + 1) + 45*sqrt(2)*(x^9 + x^5)*log(x^2 - sqrt(2)*x + 1) - 32)/(x^9 + x^5)

________________________________________________________________________________________

Sympy [A]  time = 0.245177, size = 102, normalized size = 0.9 \begin{align*} \frac{9 \sqrt{2} \log{\left (x^{2} - \sqrt{2} x + 1 \right )}}{32} - \frac{9 \sqrt{2} \log{\left (x^{2} + \sqrt{2} x + 1 \right )}}{32} + \frac{9 \sqrt{2} \operatorname{atan}{\left (\sqrt{2} x - 1 \right )}}{16} + \frac{9 \sqrt{2} \operatorname{atan}{\left (\sqrt{2} x + 1 \right )}}{16} + \frac{45 x^{8} + 36 x^{4} - 4}{20 x^{9} + 20 x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**6/(x**8+2*x**4+1),x)

[Out]

9*sqrt(2)*log(x**2 - sqrt(2)*x + 1)/32 - 9*sqrt(2)*log(x**2 + sqrt(2)*x + 1)/32 + 9*sqrt(2)*atan(sqrt(2)*x - 1
)/16 + 9*sqrt(2)*atan(sqrt(2)*x + 1)/16 + (45*x**8 + 36*x**4 - 4)/(20*x**9 + 20*x**5)

________________________________________________________________________________________

Giac [A]  time = 1.12316, size = 130, normalized size = 1.15 \begin{align*} \frac{x^{3}}{4 \,{\left (x^{4} + 1\right )}} + \frac{9}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) + \frac{9}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) - \frac{9}{32} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) + \frac{9}{32} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) + \frac{10 \, x^{4} - 1}{5 \, x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^6/(x^8+2*x^4+1),x, algorithm="giac")

[Out]

1/4*x^3/(x^4 + 1) + 9/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) + 9/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x -
sqrt(2))) - 9/32*sqrt(2)*log(x^2 + sqrt(2)*x + 1) + 9/32*sqrt(2)*log(x^2 - sqrt(2)*x + 1) + 1/5*(10*x^4 - 1)/x
^5